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ABSTRACT 
 
Precision agriculture is aimed at field management considering its spatio-temporal 
variability. Its widespread use has been made possible with the development of 
tools for data collection and georeferencing of productivity, soil properties and 
others. The large amounts of data generated require the use of information 
technology resources for processing, allowing better definition of management 
zones. The correct selection of parameters is a complex task due to the large 
number of interrelated parameters, resulting in a nonlinear problem which, 
associated to the inherent problems in data collection make it appropriate to use 
statistics and computational intelligence techniques in their approach. Our aim 
was to compare some algorithms for delineating management zones. Fuzzy c-
means, expectation maximization, X-means and self-organizing map were used. 
Georeferenced point measurements of physical and chemical properties were 
obtained from a 134.2 ha field. The properties used were pH, Ca, Mg, K, SB, 
CEC, P, C, OM, V, clay, silt and sand. The data were interpolated to a 10m x 10m 
grid. The software platforms used for delineating the management zone were 
Weka, Management Zone Analyst and Matlab, which together provide different 
algorithms. They were applied to a set of soil attributes and the result obtained 
shows differences between the techniques used. Some algorithms, such as 
expectation maximization, provided an excessive number of management zones 
when the number was not defined by the user. In addition, the algorithms 
delineated different number of management zones, depending on the soil 
properties used and on the parameters or the structure of the method. Initial results  
 
 



show differences between maps generated by linear and nonlinear methods. 
Moreover, some of them require the user to choose parameters or/and structures, 
imposing a complex procedure to the end user. Final analyses will determine 
more differences between used methods. 
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INTRODUCTION 
 
     The main objective of precision agriculture is enable field management, 
considering spatio-temporal variability. The proper delineating zones, through the 
study of the relationship between yield, soil properties and relief, avoids chemical 
exhaustion and degradation of their physical attributes, seeking the maximum 
sustainable productivity and profitability (MOLIN et al., 2006; MOLIN, 2004; 
TSCHIEDEL and FERREIRA, 2002). 
     To achieve these aims, georeferenced data are frequently used and analyzed to 
verify the most appropriate interventions for a specific area. With the advent of 
new computer technologies and geoprocessing, this work has become more agile 
and precise, with these tools being used at all stages of the crop. 
     Thus, the farmer can make the soil zoning by quantifying and visualizing 
various aspects from soil properties and attributes up to the yield obtained in the 
field. Due to this progress, there are currently several mechanisms for data 
acquisition in precision agriculture; such mechanisms allow the acquisition of a 
large amount of data that may contain important information to the process of 
decision making related to actions performed in the field, allowing productivity 
and profitability increase. 
     Although there is a diversity of tools, the correct management zone delineation 
is a complex task owing to the large number of interrelated parameters, resulting 
in a nonlinear problem. The nonlinearity of the problem combined with the 
occurrence of errors and inconsistencies in the spatio-temporal yield maps, as well 
as the soil maps indicates the use of Artificial Intelligence techniques. Several 
Artificial Intelligence techniques have been used for knowledge discovery 
(VRIESMANN et al., 2004; HUANG et al., 2010; DIMITRIADIS & 
GOUMOPOULOS, 2008; GUASTAFERRO et al. 2010; FU et al. 2010; MORAL 
et al., 2011; PEDROSO et al. 2010; RODRIGUES et al., 2011), each of which is 
suitable for different types of data gathered. In this context, the objective of this 
work is a comparison of clustering algorithms in the delineating of management 
zones using soil attributes. 
 

MATERIALS AND METHODS 
 
     The study was conducted using data from a 134.2 ha field, containing 62 
georeferenced soil samples, obtaining soil nutrients, pH, Ca, Mg, K, sum of bases 
- SB, cation exchange capacity - CEC, P, C, Organic Matter - MO and saturation 



of bases - V. From these 62 samples, 13 were chosen for the physical soil 
attributes, sand, silt and clay. The statistical description of these data is presented 
in Table 1. 
     The wheat yield maps were filtered, removing the outside field points, null or 
missing yield points, removal of partial-width platform, removing null or missing 
moisture points, null distance points and outliers yield (MENEGATTI and 
MOLIN, 2004). 
     The maps of soil attributes were interpolated using ordinary kriging and the 
yield map was interpolated using Inverse Distance Weight. The models were 
defined by average prediction errors and root-mean-square standardized error 
obtained using cross-validation. The characteristics of semivariograms calculated 
for variables are shown in Table 2. From the interpolation maps, sample were 
generated with cells from 10 meters x 10 meters, resulting in 13,284 cells. 
     In the next step, the data were converted into the format used by WEKA 
software (Hall et al., 2009), were normalized to the interval [0,1] to prevent the 
numerical difference between the attributes from influencing the results and they 
were used in all the methods evaluated. 
     The simulations were performed with the following sets: only chemical 
attributes, only physical attributes, set of all physical and chemical properties of 
soil and only yield. 
     In this work, the EM algorithm (expectation maximization) and X-means 
available in the WEKA software (Hall et al., 2009) are used, Fuzzy c-means 
algorithm implemented in management zone analysis software (MZA) 
(FRIDGEN et al., 2004) and self-organizing map (THEODORIDIS et al., 2009) 
with toolbox available in MATLAB. 
     The simulations were performed using the parameters suggested by the 
developers of the software used, except for the X-means algorithm, in which we 
change the maximum number of groups to 6, being the same interval for the 
Fuzzy c-means algorithm. 
 
Table 1.  Statistical description of soil properties and yield. 
 

Soil attributes n Mean Median Std. 
Desv. 

Min. Max. 

pH 62 5.19 5.20 0.36 4.30 5.90 
Ca (mmolc/dm3) 62 33.65 34.60 8.64 10.60 57.30 
Mg (mmolc/dm3) 62 17.74 18.15 4.74 5.20 30.50 
K (mmolc/dm3) 62 4.18 3.90 1.82 1 8.40 
SB (mmolc/dm3) 62 55.57 56.85 14.2 18.50 91.50 
CEC (mmolc/dm3) 62 106.33 105.55 12.05 78.29 134.29 
P (mg/dm3) 62 42.92 36.50 25.92 9 119 
C (g/dm3) 62 23.11 23.24 3.40 15.39 33.74 
OM (mg/dm3) 62 39.85 40.06 5.87 26.53 58.17 
V (%) 62 52.36 54.80 11.51 14.30 72.22 
Sand (%) 13 47.91 50.20 9.86 31.60 68.95 
Silt (%) 13 18.96 18.45 1.71 16.35 23.10 
Clay (%) 13 33.13 31.55 10.42 10.60 50.80 
Yield (t/ha) 74455 2.20 2.21 0.41 1.07 3.317 



Table 2.  Parameters of the experimental semivariogram for soil attributes. 
 
Soil attributes Model C0

 C Nugget 
(%) 

Spatial 
Class 

Range 

pH Circular 0.019 0.125 13.38 S 491.64 

Ca (mmolc/dm3) Rational 
Quadratic 49.780 35.168 58.60 M 1271.47 

Mg (mmolc/dm3) Rational 
Quadratic 14.602 10.920 57.21 M 1224.95 

K (mmolc/dm3) Rational 
Quadratic 1.344 2.252 37.39 M 808.40 

SB (mmolc/dm3) Rational 
Quadratic 137.544 88.036 60.97 M 1349.54 

CEC (mmolc/dm3) Rational 
Quadratic 68.804 99.776 40.81 M 943.87 

P (mg/dm3) Exponential 608.547 19.531 96.89 W 272.41 
C (g/dm3) Gaussian 7.376 7.212 50.56 M 988.34 
OM (mg/dm3) Gaussian 21.922 21.437 50.56 M 988.34 
V (%) TetraSpherical 38.311 106.902 26.38 M 525.51 
Areia (%) Gaussian 35.547 117.432 23.24 S 1169.70 

Silte (%) Rational 
Quadratic 1.476 2.075 41.57 M 1750.15 

Argila (%) Gaussian 43.567 131.574 24.88 S 1237.34 
 
     The delineation of management zones using self-organizing maps, was 
performed using the Matlab to generate the U-matrix and then delineating 
management zones applying the K-means algorithm on the U-matrix, resulting in 
management zones, according to the method used in (RECKNAGEL et al., 2006). 
To generate maps of management zones, the sample points were considered to 
belong to the group of neuron that are activated when presented to artificial neural 
network, thus creating groups of points from the groups obtained with the U-
matrix. 
     The map obtained from using each of the methods, was examined visually to 
verify if they had a manageable number of management zones, as well as the 
existence of well-defined boundaries between them. 
     The number of points in each of the zones and the average values for each 
attribute allows a quantitative analysis of the generated maps. 
 

RESULTS 
 
     The maps generated using the EM algorithm with the parameters suggested by 
the WEKA software, when not indicating the number of groups, resulted in an 
excessive number of groups (management zones) with small area which makes 
them impracticable for precision agriculture applications, as can be seen in Table 
3. In addition, simulations required a runtime many times superior to that of other 
methods, regardless of the set of attributes used. 
 
 



Table 3.  Number of groups created by the EM algorithm. 
 

Attributes Group Number 
Physical 82 
Chemical 58 
Physical + Chemical 77 
Yield 10 

 
     The statistical results of the groups defined with the X-means algorithm, Fuzzy 
c-means and self-organizing maps using the physical and chemical properties are 
presented in Tables 4, 5 and 6, where the center of each group for each the 
variables of soil can be seen. The numbers in parentheses indicate the number of 
points in each group. 
     Figures 1 to 3 illustrate the division of the field using the X-means algorithm, 
fuzzy c-means and self-organizing maps, respectively. 
     Analyzing Table 4, the central values of the groups for each attributes can be 
seen to vary to a greater or lesser extent, indicating attributes with greater or 
lesser influence in the setting groups. Attributes that have similar mean values in 
all groups has little influence on management zone delineation. 
     Figure 1 shows that the four groups defined by the X-means algorithm resulted 
in 5 management zones with well-defined borders, but with a small management 
zone which, in practice, can be attached to a neighbor management zone. 
     Table 5 presents the statistical analysis of groups generated by the Fuzzy c-
means algorithm using the physical and chemical soil properties. The number of 
groups was defined by NCE and FPI when minimum values for both were found, 
dividing the field into three groups. 
 
Table 4.  Statistical description of the groups generated by the X-means algorithm 
with physical and chemical soil properties. 
 

Var C1 (5753) C2 (4325) C3 (1144) C4 (2062) 
mean Mean mean mean 

Clay 39.93 31.07 24.73 25.57 
Silt 17.57 18.99 18.87 18.33 
Sand 41.03 48.23 54.49 55.01 
pH 4.96 4.87 4.29 4.23 
Ca 36.56 32.57 29.20 27.10 
Mg 19.15 16.90 15.03 13.87 
K 3.77 3.64 4.93 3.11 
SB 60.38 54.10 49.62 45.62 
CEC 109.15 97.33 108.05 112.49 
P 51.17 32.02 29.51 44.57 
C 24.14 19.94 22.23 23.97 
OM 41.99 34.78 38.72 41.68 
V 55.48 55.16 46.93 38.45 

 
 



 

 
 
Figure 1.  Management zones delineated by the X-means algorithm with physical 
and chemical attributes. 
 
     Figure 2 shows that the three groups defined by the Fuzzy C-means algorithm, 
resulted in three management zones with well-defined borders and the 
southwestern and southeastern zones are very similar to those obtained by the X-
means algorithm. 
     Table 6 presents the statistical analysis of groups generated by the self-
organizing map using the physical and chemical soil properties. We observed that 
the number of groups generated by the method was at least three times greater 
than the number defined by the X-means algorithm, resulting in small groups. 
     Figure 3 shows the 13 groups defined by the self-organizing map, resulting in 
13 well-defined border management zones, but due to the high number and small 
size, the management zones may become impracticable to use in precision 
agriculture. 
 
Table 5.  Statistical description of the groups generated by the Fuzzy c-means 
algorithm with physical and chemical soil properties 
 

Var C1 (5703) C2 (2888) C3 (4693) 
mean mean mean 

Clay 40.012 25.27 30.68 
Silt 17.57 18.47 18.97 
Sand 40.95 54.92 48.64 
pH 4.96 4.2 4.86 
Ca 36.58 27.54 32.45 
Mg 19.17 14.11 16.83 
K 3.78 3.68 3.70 
SB 60.42 46.57 53.93 
CEC 109.16 111.82 97.80 
P 51.19 40.74 31.73 
C 24.14 23.58 20.06 
OM 42.01 41.03 34.99 
V 55.50 40.34 54.91 



 
 
Figure 2.  Management zones delineated by the Fuzzy c-means algorithm with 
physical and chemical attributes. 
 
     The statistical results of the groups defined with the X-means algorithm, Fuzzy 
c-means and self-organizing map using only the physical attributes are presented 
in Tables 7 and 8. 
     Figures 4 and 5 show the division of the field by X-means algorithm, fuzzy c-
means and self-organizing map. 
     Analyzing Table 7, the values of the central groups for each of the attributes 
can be clearly seen to indicate the division into two areas with a higher percentage 
of clay and the other with a higher percentage of sand. 
     Figure 4 shows that the two groups defined by the X-means algorithm resulted 
in two large well-defined borders management zones, facilitating the practice of 
precision agriculture. 
     Table 8 shows the statistical analysis of groups generated by the self-
organizing map using only the physical attributes of the soil. It is worth noting 
that this method produced a high number of groups, being four times greater than 
the number defined by the X-means algorithm and Fuzzy C-means, resulting in 
small and unsuitable management zones for precision agriculture. 
 

 
 
Figure 3.  Management zones delineated by the self-organizing map with 
physical and chemical attributes.



Table 6.  Statistical description of the groups generated by the self-organizing maps with physical and chemical soil properties. 
 
Var C1 

(995) 
C2 
(405) 

C3 
(1149) 

C4 
(2114) 

C5 
(748) 

C6 
(839) 

C7 
(1415) 

C8 
(796) 

C9 
(888) 

C10 
(654) 

C11 
(706) 

C12 
(1747) 

C13 
(828) 

mean mean mean mean mean mean mean mean mean mean mean mean mean 
Clay 40,39 26,32 33,38 29,32 35,45 28,40 24,39 24,37 31,49 35,90 42,14 46,36 33,18 
Silt 17,31 18,36 17,00 18,84 18,09 17,74 18,57 19,00 20,42 17,80 18,00 17,77 18,36 
Sand 40,78 53,98 48,12 49,1 45,13 52,69 55,93 54,51 46,15 45,06 38,24 34,36 47,08 
pH 5,00 4,32 5,00 4,92 5,0 4,79 4,01 4,3 4,3 5,00 4,71 5,00 4,54 
Ca 37,50 29,26 34,77 30,91 34,96 31,16 25,43 29,36 35,88 36,3 33,44 39,13 32,35 
Mg 19,67 15,1 18,22 15,93 18,31 16,12 12,95 15,10 18,84 19,21 17,24 20,52 16,79 
K 3,33 3,33 4,84 3,64 2,68 3,39 3,06 5,44 5,42 2,31 3,17 4,32 2,40 
SB 61,83 48,70 58,40 51,65 56,47 51,58 43,25 50,15 60,42 58,92 55,31 64,63 52,95 
CEC 106,53 100,1 106,23 93,51 107,25 110,39 113,59 110,58 102,58 106,88 111,21 112,62 97,02 
P 50,38 38,26 49,55 26,70 44,7 48,70 42,42 27,01 30,11 46,62 52,71 54,98 40,11 
C 24,48 21,75 24,14 19,53 21,59 24,26 23,88 22,31 19,75 23,67 23,06 24,89 20,42 
OM 42,58 37,96 42,09 34,13 37,64 42,11 41,53 38,86 34,37 41,18 40,10 43,29 35,53 
V 57,05 48,83 55,44 53,49 55,22 47,6 34,69 46,50 61,48 56,94 46,59 58,11 52,91 
 
Table 7.  Statistical description of the groups generated by the X-means and Fuzzy c-means algorithm with physical soil properties. 

 

Var C1 (4831) C2 (8453) 
mean mean 

Clay 41.78 28.78 
Silt 17.69 18.59 
Sand 39.05 51.07 

 



 
 
Figure 4.  Management zones delineated by the X-means and Fuzzy c-means 
algorithm with physical attributes. 
 
     Figure 5 shows the 8 groups defined by the self-organizing map, resulting in 8 
small well-defined border management zones, but due to the large number of 
zones, it may make management zones impractical for use in precision 
agriculture. 
 
Table 8.  Statistical description of the groups generated by the self-organizing 
maps with physical soil properties. 
 
Var C1 

(1528
) 

C2 
(1980
) 

C3 
(1391
) 

C4 
(1300) 

C5 
(2346) 

C6 
(1491) 

C7 
(2189) 

C8 
(1059
) 

mean mean mean mean mean mean mean mean 
Clay 33.38 27.34 39.69 30.89 45.56 31.26 24.32 35.78 
Silt 17.17 17.94 17.57 18.42 17.79 20.08 18.91 18.29 
Sand 48.01 53.32 41.27 49.07 35.13 46.8 55.18 44.65 
 

 
 
Figure 5.  Management zones delineated by the self-organizing map with 
physical attributes. 



 
Table 9.  Statistical description of the groups generated by the X-means algorithm 
with chemical soil properties. 
 

Var C1 (5294) C2 (4669) C3 (2072) C4 (1249) 
mean mean mean mean 

pH 5.00 4.87 4.38 4.00 
Ca 36.86 32.47 30.05 25.21 
Mg 19.34 16.85 15.46 12.83 
K 3.86 3.68 3.95 2.98 
SB 60.88 53.95 50.37 42.9 
CEC 108.93 97.73 110.59 113.96 
P 51.17 31.88 41.36 42.51 
C 24.28 20.05 23.15 23.89 
OM 42.24 34.97 40.26 41.57 
V 56.41 54.93 45.08 33.78 

 
     The statistical results of the groups defined by the X-means algorithm, Fuzzy 
C-means and self-organizing map using only the chemical properties are 
presented in Tables 9, 10 and 11. 
     Figures 6 to 8 illustrate the division of the field by the X-means algorithm, 
fuzzy c-means and self-organizing map, respectively. 
     The analysis of Table 9 shows the central values group for each attributes, 
indicating that the Ca, Mg, V and SB attributes have great influence on the 
division of the groups. 
     Figure 6 shows that the four groups defined by the X-means algorithm, 
resulted in five management zones with well-defined borders and there is great 
similarity between the southwest and southeast management zones in comparison 
with those obtained by using the physical and chemical attributes. 
 
 

 
 
Figure 6.  Management zones delineated by the X-means algorithm with 
chemical attributes. 
 
 



Table 10.  Statistical description of the groups generated by the Fuzzy c-means 
algorithm with chemical soil properties. 
 

Var. C1 (4844) C2 (2941) C3 (5499) 
Mean Mean Mean 

pH 4.86 4.16 5.00 
Ca 32.43 27.75 36.7 
Mg 16.82 14.21 19.24 
K 3.7 3.55 3.85 
SB 53.88 46.85 60.62 
CEC 98.09 112.21 108.98 
P 31.95 41.61 51.17 
C 20.12 23.49 24.26 
OM 35.08 40.88 42.20 
V 54.77 39.70 56.12 

 
     Table 10 presents the statistical analysis of groups generated by the Fuzzy C-
means algorithm using only the soil chemical properties. The number of groups 
was defined using NCE and FPI index and the field was divided into three groups. 
As the X-means algorithm, analyzing the mean values of the attributes, it is 
possible to observe that the attributes Ca, Mg, V and SB, had a significant 
influence in the definition of the groups. 
     Figure 7 shows the three groups defined by the Fuzzy c-means algorithm, 
which resulted in 4 management zones with well-defined borders. The map was 
very similar to that obtained with the X-means algorithm; the only difference was 
the union of the two management zones to the north in a single zone management. 
     Table 11 presents the statistical analysis of groups generated by the self-
organizing map using only the soil chemical properties. Note that, for this 
method, the number of groups was high, being almost double the number set by 
the X-means algorithm and fuzzy c-means, resulting in small and unsuitable 
management zones for precision agriculture. 
 

 
 
Figure 7.  Management zones delineated by the Fuzzy c-means algorithm with 
chemical attributes. 
 



 
Table 11.  Statistical description of the groups generated by the self-organizing 
map with chemical soil properties. 
 

Var. 
C1 
(922) 

C2 
(1327) 

C3 
(804) 

C4 
(1297) 

C5 
(2940) 

C6 
(1527) 

C7 
(4467) 

mean mean mean mean mean mean mean 
pH 4.27 4.91 5.00 4.76 4.82 4.01 5.00 
Ca 29.25 34.63 36.13 31.82 31.17 25.60 37.27 
Mg 15.04 18.11 18.99 16.42 16.09 13.04 19.56 
K 5.13 2.62 5.56 3.42 3.4 3.07 3.97 
SB 49.81 56.11 60.85 52.81 51.87 43.5 61.66 
CEC 108.74 107.01 102.84 110.53 94.30 113.09 108.84 
P 28.3 45.28 30.55 50.66 29.74 42.27 51.51 
C 22.24 21.70 19.79 23.94 19.74 23.79 24.47 
OM 38.73 37.78 34.45 41.55 34.47 41.40 42.59 
V 46.92 54.33 62.10 46.65 53.30 35.18 56.97 
 
     Figure 8 shows that 7 groups defined by the self-organizing map, resulted 8 
small and well-defined border management zones, but due to the large number of 
zones, it is impractical for use in precision agriculture. 
     Another set of simulations was performed using only the yield map, but the 
results were not satisfactory, because they do not present well-defined boundaries 
for any of the algorithms used. Furthermore, in the case of the fuzzy c-means 
algorithm, there was not convergence of FPI and NCE indexes and the self-
organizing map resulted in 17 groups, which is a high number, following the trend 
observed with other data sets. Figure 9 shows the map produced with the X-means 
algorithm. 
 
 

 
 
Figure 8.  Management zones delineated by the self-organizing map with 
chemical attributes. 
 
 
 



 
 
Figure 9.  Management zones delineated by the X-means algorithm with yield 
map. 
 
     Analyzing the all the results, the fuzzy c-means algorithm showed to be the 
best of the methods used, providing management zone maps with well-defined 
borders and without excessive management zones. 
     The second best algorithm is the X-means, providing some small management 
zones which, in practice, may be incorporated into one another. 
     The self-organizing map provided better results than the EM algorithm, but an 
excessive number of management zones. Additionally, despite being fast to run, 
the method requires the choice of the dimensions of the map of neurons and the 
use of a clustering algorithm to generate management zones from the U-matrix. In 
this work, the K-means algorithm was used. 
     The EM algorithm presented the worst results, generating maps with a large 
number of management zones and requiring a runtime ten times higher than the 
other methods. 
 

CONCLUSIONS 
 
     Based on the results, we can conclude that the maps generated by X-means 
algorithm and Fuzzy c-means are very similar. 
     The Fuzzy c-means algorithm was the best among the algorithms used. 
     The method using self-organizing maps generated many management zones 
and the process for obtaining management zones requires the use of one clustering 
algorithm. 
     Finally the EM algorithm fails to delineate management zones when used to 
automatically adjust their number, resulting in a high number and a long 
processing time. 
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