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     Yield maps constitute one of the major information in order to understand 
grain yield spatial variability and its causes. Many times the farmer has more than 
one harvester operating but having more than one yield monitor is seldom the 
case. This work has objective of investigating the possibility of reconstructing 
yield maps using incomplete data sets. Mayze yield data from a farmers’s field of 
35 hectares located in Campos Novos Paulista, SP, Brazil was used for this study. 
The complete data set corresponding to one yield data reading for every 4 seconds 
on a 4.5 meters wide harvester generated a data set of 23346 data points. Using 
this data set, it was simulated to have an increasing number of missing passages 
of the harvester, namely, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 15 and the maps were 
reconstructed using geostatistical techniques to evaluate the semivariograms and 
to interpolate values for the locations of the missing points using the kriging 
method. The total harvest load obtained with the interpolated values plus the 
measured was not affected by the number of missing passages meaning that the 
reconstruction technique does not over neither under estimate yield values. The 
unbiasedness condition imposed on the kriging interpolation supports this result. 
The semivariograms for each data set with missing harvester passages are slightly 
different owing to lack of data in regions of higher variability than others. The 
yield maps produced with missing harvester passages are visually different from 
the complete data set map due to variability of yield data in short distances which 
the missing passages failed to properly evaluate.  
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INTRODUCTION 
 

One of the major difficulties for the grain producing farmers in Brazil to adopt 
precision agriculture practices is the cost involved with yield monitors. In general 
farmers have three or more harvesting machines operating but may have only one 
of them equipped with yield monitor.  
The objective of this paper is to investigate the possibility of reconstructing yield 
maps using incomplete data sets. 
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MATERIAL AND METHODS 
 

     Mayze yield data from a farmers’s field of 35 hectares located in Campos 
Novos Paulista, SP, Brazil, from autumn cultivation was used for this study. The 
complete data set corresponding to one yield data reading for every 4 seconds on 
a 4.5 meters wide harvester generated a data set of 23346 data points. Using this 
data set, it was simulated to have an increasing number of missing passages of the 
harvester, namely, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 15 and the maps were 
reconstructed using geostatistical techniques to evaluate the semivariograms and 
to interpolate values for the locations of the missing points using the kriging 
method. General descriptive statistical parameters were calculated for each data 
set. Semivariogram models were fitted and the parameters analyzed. Scaled 
semivariogram was used compare the variability pattern for each data set. 
Assuming that a farmer has four harvesting machines from which one of them is 
equipped with yield monitor the map obtained by kriging interpolation was 
compared with the map for the complete data set. The geostatistical procedures 
were done following the recommendations contained in VIEIRA (2000). 
 

RESULTS AND DISCUSSION 
 

      General descriptive statistical parameters were not significantly affected by 
the increasing number of missing monitors as shown in Table 1. Except for the 
number of points almost equal for YLD71 as compared to YLD81, these result 
seem to guarantee that the simulation technique used was appropriated. 
Table 1. Descriptive statistical parameters. 
Variable Mean Median Mode SD Kurt Skew Min Max n 
Yield 
Total 2720.16 2642.24 2484.54 609.99 1.74 1.03 1000.83 5497.30 23346
YLD11 2702.16 2635.62 2484.54 605.20 1.95 1.04 1053.57 5476.36 11021
YLD21 2702.77 2629.34 2087.91 606.53 2.09 1.08 1000.83 5476.36 7272 
YLD31 2720.66 2660.47 2180.79 591.38 1.84 1.00 1053.57 5378.26 5853 
YLD41 2744.23 2668.54 2726.46 604.73 1.63 1.01 1103.36 5378.26 4718 
YLD51 2670.28 2609.45 2087.91 619.08 2.33 1.10 1058.55 5476.36 3795 
YDT61 2660.91 2603.61 2454.91 577.13 1.60 0.87 1058.55 5452.38 3023 
YLD71 2719.37 2654.09 1969.81 557.59 2.43 1.14 1355.98 5221.25 2580 
YLD81 2668.39 2629.02 1873.09 580.79 1.66 0.81 1092.83 5405.10 2587 
YDT91 2705.88 2634.89 2726.46 647.98 1.99 1.07 1103.36 5962.64 2471 
YD101 2770.50 2706.19 2410.28 628.38 1.07 0.67 1092.83 5452.38 1631 
YL151 2671.86 2631.95 2146.64 536.89 2.78 1.09 1411.99 5220.38 1436 
Because the parameters of the semivariogram models fitted represent the spatial 
variability of the yield data, it can be seen in Table 2 that the spatial variability of 
the yield data was adequately preserved wit the increasing elimination of 
harvesting machine passages. Ten out of twelve semivariograms were fitted to the 
spherical model. The range of correlation was very similar for all semivariograms. 
 
 
 
 



Table 2. Semivariogram parameters 
Variable Model C0 C1 a r2 RMSE DD 
Yield 
Total Spherical 73768.66 252148.16 318.07 0.9967 521.34 22.63
YLD11 Spherical 68241.61 247212.51 310.34 0.9955 570.77 21.63
YLD21 Spherical 61613.50 259193.23 306.67 0.9888 850.59 19.21
YLD31 Spherical 61613.39 249193.12 312.66 0.9942 589.71 19.82
YLD41 Spherical 61613.51 249193.22 283.84 0.9868 1208.04 19.82
YLD51 Spherical 77051.16 250845.43 312.89 0.9801 1039.51 23.50
YDT61 Spherical 57993.27 230371.99 275.53 0.9780 1268.83 20.11
YLD71 Spherical 57993.19 220371.95 324.15 0.9810 1777.58 20.83
YLD81 Exponential 34558.59 253194.18 233.42 0.9626 1667.54 12.01
YDT91 Exponential 29234.66 342327.24 317.36 0.9590 2821.24 7.87 
YD101 Spherical 17573.97 322234.69 271.00 0.9619 2492.46 5.17 
YL151 Spherical 32593.26 218743.21 300.00 0.8838 3558.65 12.97
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Figure 1. Scaled semivariograms for all the yield data sets. 
The scaled semivariograma shown in figure 1 reveals that, except for YLD151 
(the data set with the largest missing passages), all others coalesced to one single 
trend which is the expression of the spatial variability of the yield data. 
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Figure 2. Yield maps obtained with kriging interpolation: a) Data set composed of 
a simulation of 4 harvesting machines from which only one has yield monitor; b) 
Complete data set. 
The visual comparison of the yield maps for a data set with four harvesting and 
only one with yield monitor (YLD31) and the one with the complete data set 
(Yield Total) (Figure 2) shows that the reconstruction technique misses the 
specific regions of high yield but reproduced well all the other places. 
 

CONCLUSIONS 
 

      The yield maps produced with missing harvester passages are visually 
different from the complete data set map due to variability of yield data in short 
distances which the missing passages failed to properly evaluate. 
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