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Abstract 

 

The objective of this work was to compare soil spectral reflectance readings obtained by 

two spectrometers and evaluate their potential to predict soil attributes. A total of 261 

samples were used which were collected in the depth ranges 0-0.2, 0.4-0.6 and 0.8-1 m. 

The samples were sent to a laboratory to determine soil granulometry (particle size 

distribution); soil organic matter (SOM) and chemical elements (K, Ca, Mg and H + Al) 

to calculate CEC. Two instruments were used for the spectral readings. The comparison 

of sensor readings from both spectrometers using Pearson linear correlation was good in 

the range 400 – 1900 nm. The predictions of soil attributes using partial least squares 

regression (PLSR) exhibited significant possibilities for determining soil physicals 

characterists, such as sand and clay. This is an ongoing study and a third instrument will 

be used for new comparisons. 

 

Keywords: chemometrics, Vis-NIR spectroscopy, proximal soil sensig. 

 

Introduction 

 

Nowadays, determination of soil properties using techniques based on the 

electromagnetic spectrum give good results when the visible (Vis; 400-700nm), near 

infrared (NIR; 700-2500nm) and middle infrared or thermal (MIR or TIR; 2500 – 25000 

nm) (Viscarra Rossel et al., 2006; Chabrillat et al., 2013) are used. The advantages of the 

technique are that it is low-cost, non-destructive, residue free and providing real-time soil 

observation (Maleki et al., 2008; Mouazen et al, 2005; Kodaira & Shibusawa, 2013). 

Some authors state that, in certain cases, the spectroscopy of reflectance linked with 

techniques of multivariate statistics can be more precise than the methods traditionally 

used to determine some soil attributes (McCarty et al., 2002; Lugassi et al., 2014). 

In Brazil, the study of these chemometric techniques applied to precision agriculture are 

practically inexistent. On the other hand, we have a good amount of work using 

reflectance spectroscopy (Vis-NIR) to assist pedologists in soil classification, which is 

currently being built a Brazilian soil spectral library (Demattê & Land, 2014; Araújo et 

al ., 2014). Some models of more robust spectrometers are being commercialized with 

the aim of direct application in the field. Nevertheless, the spectral relations still have to 

be well understood by first using this equipment under controlled conditions. 

The objective of this work was to compare the spectral readings of two spectrometers and 

evaluate their potential to predict soil attributes. 

 

 

 

 

Material and methods 



 

Soil Samples 

The soil samples used in laboratory belong to the Soil Spectral Library of Brazil (BESB). 

A total of 261 soil samples were utilized, collected along the soil profile in the depth 

ranges 0-0.2, 0.4-0.6 and 0.8-1m. After the soil extraction, the samples were dried at a 

temperature of 45ºC for 24 h, cooled and passed therough a 2 mm sieve. Afterwards, the 

samples were sent to a laboratory where physical and chemical properties were analysed. 

The particle analysis was done in accordance with the procedures proposed by Embrapa 

(1997), where the fraction of clay of the soil is measured by densimetry, the sand content 

by sieving and the silt fraction composes of remaining part of the sample. The chemical 

analysis of K, Ca, Mg and H + Al was processed in a laboratory according to the 

methodology proposed by Raij et al. (2001) and the cation exchange capacity (CEC) at 

pH 7 was obtained from these results. The determination of the soil organic matter 

contents were done by wet oxidation with a solution of potash dichromate (0.167 mol L-

1) being indirectly estimated by titration of the chromium íons (Cr3+) remaining after 

oxidation, with ammoniac iron sulphate (0.1 mol L-1). 

 

Spectral aquisition 

The two instruments used for spectral data acquisition were: FieldSpec 3 (ASD, Boulder, 

Colorado, USA) with spectral range from 350 to 2500 nm (Vis-NIR) and spectral 

resolution of 3 to 10 nm; and AgroSpec (Tec5, Oberursel, Germany) with spectral range 

from 305 to 2205 nm (Vis-NIR) and spectral resolution from 10 to 16 nm. 

The spectral readings were obtained in a dark environment to minimize diffuse radiation. 

Both readings were retrieved from soil samples placed in petri plates. For the FieldSpec 

3, the optical fiber cable was positioned 0.08 m from the sample using, as illumination 

sources, two 50W halogen lamps, offset 0.35m from the sample supported at a zenith 

angle of 30 degrees. For the AgroSpec, the reading were taken by positioning the 

measuring head at 0.01 m from the sample; the latter instrument has an integrated energy 

source (light) within the optical fiber cable to both emit and simultaneously read energy. 

As a standard reference of reflectance, for obtaining radiometric data in reflectance 

values, a Spectralon plate was used, taking into account that this material provides nearly 

100% reflectance. Calibration readings using the standard plate were made every 20 

minutes for the acquisition of the spectral information. 

 

Data analysis 

Initially, the soil chemical and physical data were submitted to descriptive statistical 

analysis. A Pearson correlation was obtained between the spectral readings of both 

instruments and data presented graphically. No pre-treatment was used in the spectral 

data and the whole spectral ranges of the spectrometers were used to create the model. 

Models of prediction of the soil attributes were generated through partial least squares 

regression (PLSR) with cross validation (leave-one-out) using the software The 

Unscrambler X v. 10.3 (CAMO Software, Oslo, Norway). 

 

Results 

 

Descriptive statistics of soil attributes are shown in Table 1. There was a wide range of 

variation in parameters evaluated, mainly because of the variety of soil types and 

stratification of samples at different depths tested. 



 

Table 1. Descriptive statistics of soil attributes analyzed in 261 soil samples. 

Soil Attributes Mean Max Min Median Std Dev. Skewness Kurtosis 

Sand (g/kg) 538.77 936 20 614 312.17 -0.19 -1.64 

Silt (g/kg) 78.06 303 1 42 80.21 1.44 0.89 

Clay (g/kg) 383.19 847 40 331 265.53 0.30 -1.37 

SOM¹ (g/kg) 15.88 47 2.4 14 9.98 0.88 0.06 

CEC² (mmolc/dm³) 33.07 110.3 5.3 25.3 23.91 1.28 0.96 
¹Soil organic matter; ²Cation exchange capacity (pH 7). 

 

The FieldSpec sensor, which has a higher resolution and spectral range, showed smoother 

curves as compared with the AgroSpec sensor, especially in regions below 420 nm and 

above 1850 nm, where the AgroSpec sensor  showed larger amounts of noise and random 

values in sensor readings (Figure 1). 

 
Figure 1. Spectral curves of reflectance from AgroSpec (left) and FieldSpec 3 (right) 

equipment. 

 

The comparison between the acquisitions of the two instruments is shown in Figure 2. 

The correlation coefficients are high (above 0.95) and stable between 400 and 1900 nm. 

The high noise found in AgroSpec sensor data outside this range (Figure 1) contributed 

to reducing correlation coefficients in those regions of the spectrum. 

 
Figure 2. Correlation coefficients between spectral readings of AgroSpec (Tec5) and 

FieldSpec 3 (ASD Inc.) for 261 soil samples. 

 

The predictions of soil attributes using the PLSR models are shown in Figure 3. Based on 

the greater r² and lower RMSE values, it can be observed that the FieldSpec 3 sensor gave 

better results in cross-validation for all attributes, with the best performance found for 

estimating the sand and clay contents of soil. 
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Figure 3. Results of predicted and reference values from the PLSR model using full cross 

validation. AgroSpec is shown on the left and FieldSpec on the right. Blue points 

indicate calibration model and red points validation. 

Discussion 

 

Both instruments displayed high correlation between readings within the range of 400 to 

1900 nm. AgroSpec data contained some noise through all its sampling range leading to 
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lower correlations and reducing its estimation capabilities when compared to FieldSpec 

3. The comparison between readings with a second instrument showed that the 

fluctuations of reflectance in this range do not relate to the properties found in the samples 

but to some other factor related to the hardware. Aiming to reduce this noise, it is 

recommended to decrease the initial and final range of reading of the AgroSpec. Kuang 

et al. (2015), operating the AgroSpec in the field also report noise in these spectral 

regions. 

The models of prediction of soil attributes, predidicted the soil physical properties (sand 

and clay) better, probably because this aspect strongly affects the intensity of reflectance 

of the readings. The use of spectral data without transformation or treatment in PLS 

regressions showed promising results for some variables. 

 

Conclusions 

 

The spectral reflectance readings of the sensors evaluated showed a high correlation 

between bands in the range of 400 to 1900 nm. However, caution is advised when using 

AgroSpec sensor data outside this range. 

The prediction of soil attributes using spectral reflectance (Vis-NIR) was most successful 

for the soil physical attributes, mainly sand and clay, indicating good potential for the use 

of this instrument to predict these variables. This is an ongoing study and a third 

instrument will be used for new comparisons. 
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