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Abstract. Sugarcane (Saccharum spp.) has an important economic role in Brazilian agriculture, 
especially in São Paulo State. Variation in the volume of plants can be an indicative of biomass 
which, for sugarcane, strongly relates to the yield. Laser sensors, like LiDAR (Light Detection and 
Ranging), has been employed to estimate yield for corn, wheat and monitoring forests. The main 
advantage of using this type of sensor is the capability of real-time data acquisition in a non-
destructive way, previously to harvesting. Currently, there are few studies dealing with sugarcane 
canopy sensors for biomass estimation. The objective of this study is the use of LiDAR technology to 
measure height of sugarcane plants in the pre-harvest period. Measures were carried out with the 
sensor fixed on a mechanical arm over experimental plots of sugarcane 10 days before harvest. The 
experiment consisted of 8 plots of 12 x 30 m each consisting of four nitrogen treatments. The laser 
sensor used was a SICK LMS200 which collects distance and angle values in different directions in a 
2D plane with a wavelength of 905 nm, angular resolution of 1º, scan angle of 180º, frequency of 75 
Hz and 8 m of range. A GNSS receiver with RTK differential correction was used in conjunction with 
the sensor for georeferencing data. The sensor was approximately 4 m above the ground, focusing 
vertically to the plants. The distance values were transformed, through R and QGIS software, into a 
point cloud which each point has a real geographical coordinate. The average yield of plots 
estimated was 107.24 t ha-1. There was no correlation between height of plants measured by the 
sensor and estimated yield (r= -0.52) as did not exist significant variability on both. Despite that some 
adjustments can be done in the data acquisition, like the sensor stabilization and its position due to 
terrain inclination. Laser sensors can provide complementary information for helping on sugarcane 
yield estimation as yield monitors are not yet popular as on grain crops. More studies are needed to 
validate its application for biomass and yield estimation in production scale of sugarcane. 
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INTRODUCTION 

Precision agriculture and sugarcane scenario 

Competitiveness of the agricultural sector clearly shows the need to achieve higher levels of 

production through agricultural practices associated with the control of applied inputs. The use of 

Precision Agriculture (PA) technologies results in a higher demand for equipment to obtain data, 

especially related to the variability of crops in the field, which contributes to monitoring the production 

cycle of crops in order to make better use of inputs and resources available in the field. 

The Brazilian production for sugarcane crop achieved, approximately, 617 million tons, which 

represents an increase of 8.0% in relation to the cycle of 2014/15. The current yield of the harvested 

crop reached 83 t ha-1 (CONAB, 2016). 

Precision agriculture has contributed to the maintenance of the production of sugarcane system 

focusing on reducing costs, minimizing environmental impacts and improving the quality of the 

product (MAGALHÃES and CERRI, 2007). Silva et al. (2011) reported that automatic steering 

system is the mainly PA tool used in the sugarcane production allowing reduction in soil compaction, 

traffic control and longevity of the sugarcane field. 

Yield maps, for sugarcane crop, began in the studies conducted by Pierossi and Hassuani (1997) for 

the harvest of chopped sugarcane in Brazil and by Cox et al. (1997) with the development of 

instrumentation for harvesters in Australia. According Bramley (2009) yield maps allows identification 

of heterogeneity present in the crop and, consequently, its management differently. Figure 1 shows a 

yield map of a sugarcane field (6.7 ha) in Australia, where yield changes can be verified even in 

nearby regions. 

 

Fig 1. Yield map of 6.7 ha for sugarcane in Australia. Bramley and Quabba (2001) 

Due to the scarce availability of alternatives for measuring yield in sugarcane crop, a methodology 
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that allows data acquisition, non-invasively, close to harvesting, is essential for yield monitoring. 

LiDAR technology and applications 

LiDAR (Light Detection and Ranging) technology, originated in the 1960s, is a type of remote sensing 

capable of measuring distances using pulses emitted by a instantaneous laser and non-destructive 

way. The main components of this technology are the laser operating between 600 nm and 1000 nm, 

scanner, optical sensors, photodetectors and electronic receivers for transmission and reception of 

each pulse (ROSELL and SANZ, 2012). 

The laser sensors operation is based on calculating distance between sensor and obstacle. The 

most commonly used type of laser sensor is based on the concept of time-of-light (TOF), which 

measures the interval time between laser pulse emission and its reception. This principle can be 

applied for studies that aim to estimate geometric parameters (height, volume, etc.) of objects 

(ZHENG et al., 2013). Most of forestry research employs airborne LiDAR technique to estimate 

parameters, as height and biomass, in forest areas (LI et al. 2014; LUO et al. 2015; POPESCU et al. 

2011). 

Furthermore, laser sensors can be used to detect obstacles in agricultural machines using 

autonomous direction (DOERR et al., 2013), estimates of biomass in pastures density (GARCÍA et 

al., 2010) and automated irrigation systems in vineyards (KANG et al., 2011). For terrestrial laser 

scanning this technique can be used to develop crop models (TILLY et al. 2014) and measuring corn 

plant location and spacing (SHI et al. 2015). Selbeck et al. (2010) evaluated a laser sensor in the 

experimental fields of maize, using a commercial equipment allocated 3.70 m above the ground, to 

calculate the biomass of plants. The results showed high correlation (R² = 0.94) with the real biomass 

data. Schirrmann et al. (2016) have been used laser sensors in crops, as wheat, to estimate biomass 

from plants height data obtained before harvest. 

The use of this kind of approach may represent an opportunity for the development of yield prediction 

models. So, the objective of this study is to use LiDAR technology to measure height of sugarcane 

plants in the pre-harvest period and relate it to biomass production. 

 

MATERIAL AND METHODS 

A laser sensor LMS200 (SICK AG, Waldkirch, Germany) and a GR3 GNSS receiver (Topcon, 

California, USA) were employed. The laser sensor, based on the TOF concept, comprises a light 

beam of 905 nm and it is inserted into the security class 3 (EN 50178, 1997), therefore, does not 

damage to the user's view. Some technical specifications about the sensor are presented in the 

Table 1. 
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Table 1 – Technical specifications of the sensor LMS200 (SICK AG, Waldkirch, Alemanha) 

Specifications Values 

Wavelength 905 nm 
Operating voltage 24 V 
Operating range 8 - 80 m 

Angular resolution 0,25º; 0,5º; 1º 
Frequency 25; 35; 50; 75 Hz 

Response time 53; 26; 13ms 
Resolution ± 10 mm 
Accuracy ± 35 mm 

Temperature range 0 - 50ºC 
Data transmission rate 9,6; 19,2; 38,4; 500 kBauds 

Weight 4,5 kg 
Dimensions 156 mm x 155 mm x 210 mm 

The scan angle of the sensor is 180° for measurements up to 10 m with 10% reflectivity for outdoor 

ambient. For data acquisition was used the RS-422 communication protocol and frequency of 75 Hz. 

The angular resolution of the sensor was set to 1º and 8 m of range. According to the manufacturer, 

for this configuration, the response time is 13 ms and the statistical error estimated at ± 5 mm. 

The coordinates of each point were obtained by means of geographic coordinates recorded by the 

GNSS (Global Navigation Satellite System) receiver using a set of L1/L2 + GLONASS receivers with 

differential correction RTK (Real Time Kinematic). This level of accuracy was necessary because of 

the point clouds georeferenced and the employment of RTK signal in most of agricultural operations. 

The GNSS receiver was connected to the computer via serial RS-232. 

A portable computer, Toughbook CF-18 (Panasonic, USA), was used with a programming routine 

described in the Processing software (Processing Foundation, 2014) for receiving data from the laser 

sensor and GNSS receiver. Figure 2 shows a scheme with main components used for acquisition 

data of the laser sensor. 

 

Fig. 2 - Scheme with the main components for acquisition data using a laser sensor. Adapted from Rosell et al. (2009) 

We collected the data in an experimental area that consists of 0.65 ha with a sugarcane variety (IAC 

95-5094) of 12 months age. Plants were arranged in 16 plots, as shows Figure 3, with eight plots of 

15 m x 30 m each and other eight plots of 12 m x 30 m each. The plants were spaced at 1.50 m 

between rows and subjected to different treatment of nitrogen levels (0, 60, 120 and 180 kg ha-1). 
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Fig. 3 – Experimental area of sugarcane 

Due to the slope land and the presence of leaves "lying ground" on the borders of plots, the sensor 

showed some errors in the data acquisition, therefore, was considered eight central portions of the 

experimental area, totaling 0.29 ha. Data acquisition occurred 10 days before sugarcane harvest. 

Plants height data were collected manually through a topographical rule, individually in five plants of 

each plot, obtaining the average height of sugarcane plants. Manual measurements were obtained 

15 days before harvest. Sugarcane yield for each plot was estimated by the method proposed by 

Martins and Landell (1995). 

The three-dimensional plotting requires that each point cloud presents geographic coordinates (UTM 

- Universal Transverse Mercator) represented by x, y and z axis, where the x-axis represents the 

direction of tractor movement and the y-axis the direction of scan angle by the laser sensor. The 

coordinate z is calculated from the scan angle sensor and the distance between sensor and 

sugarcane plants. Figure 4 illustrates the sensor position for acquisition data in the sugarcane field. 

 

Fig. 4 – Positioning laser sensor for acquisition data in sugarcane field 

The equipments were allocated 4 m above the ground (Figure 5) with the sensor focusing vertically 

to the plants. The agricultural vehicle crossed plots with a constant speed of 1.0 m s-1 in carriers of 3 
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m wide. A structure (cantilever beam) coupled rigidly to the side of the tractor was developed to 

provide stability to the sensor. 

 

Fig. 5 - Structure beam type in balance coupled rigidly to the side of the tractor (a); equipments in the structure (b) 

The distance values provided by the sensor were in the form of polar coordinates, which 

subsequently were converted into Cartesian coordinates from equations 1 and 2. 

xij = dij sen (ij)   (1) 

zij = H – dij cos (ij)   (2) 

where, xij: cartesian coordinate x-axis in the point ij (m), dij: distance between sensor and target in the 

point ij (m), ij: measuring angle (º), zij: cartesian coordinate z-axis in the point ij (m), H: sensor height 

above the ground (m). 

This procedure was developed in RStudio (R Development Core Team, 2014), where is necessary to 

indicate the sensor height above the ground (H). The point cloud was assessed using 

CloudCompare® software to identify the height of sugarcane plants in experimental area. Its 

corresponding histogram was obtained by the same software using the Gaussian distribution. An 

individual file was generated for each plot through QGIS software (OSGeo, 2014) due to the 

computational performance. 

A data cleaning was done, which involves the elimination of outliers and the overlap of 4 m due to the 

reading range achieved by the sensor on the path crossed. The average height of sugarcane plants 

(H̅) was calculated from equation 3 in a spreadsheet from the files generated in the previous step. 

   
H̅ = ∑  

𝑧𝑖

𝑛

𝑛

𝑖=1

 
                                  

 

       (3) 

where, H̅: average height of sugarcane plants (m), zi: cartesian coordinate z-axis in the point ij (m), n: 

number of points. 

The spatial variability of the plants height indicated by the laser sensor was verified calculating the 

coefficient of variation (CV), according to the equation 4. 
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 CV = 
100 x σ

H̅
  (4) 

where, CV: coefficient of variation (%), : standard deviation (m), H̅: average height of sugarcane 

plants (m). 

 

RESULTS AND DISCUSSION 

As the volume of data generated by the sensor after processing is about 27 million points, the 

information of each plot was extracted individually to improve computational performance and 

obtaining total values for each plot. 

Figure 6 shows the result from data cleaning, where homogeneity in the experimental area can be 

verified with respect to the plants height. The corresponding histogram obtained by the Gaussian 

distribution, allows checking the plants height distribution of the data set. 

 

Fig. 6 - Plants height, obtained by the laser sensor, of the experimental area (a); histogram (b) 

The data processing result from the laser sensor, considering the eight plots is shown in Figure 7. 

The point clouds generated can identify the three-dimensional shape of the experimental area and its 

georeferencing. 

 
Fig. 7 - Plants height, obtained by the laser sensor, of the eight plots (a); histogram (b) 
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The individualized plot, as plot number 7 showed in Figure 8, allows obtaining the average height of 

sugarcane plants and verifying possible differences between each evaluated plot. 

 

Fig. 8 - Plants height, obtained by the laser sensor, of plot number 7 (a); histogram (b) 

There is high vegetation density during this stage of sugarcane maturation and it is impossible to  

individualize plants in the point clouds, which means that the resolution of the laser sensor employed 

allows only get the features on a small scale. 

The descriptive statistics of the raw data obtained by the laser sensor in the experimental area is 

shown in Table 2. Besides of the data cleaning result considering 16 plots, only data from eight 

experimental plots were processed. 

Table 2 - Descriptive statistics of the raw data and the data resulting from the processing of the eight plots 

  Plants height (m)  

 Number of points Minimum Maximum Average 
Standard deviation 

(m) 

Raw data 27,457,455 0.14 3.21 1.82 0.58 
Data cleaning 27,066,379 0.14 3.21 1.82 0.58 

Processed data  17,914,232 0.14 3.08 1.82 0.58 

 

Even with the adopted procedures, data cleaning and its processing, no changes were observed in 

the average plant height and the standard deviation. The minimum value (0.14 m) refers to the 

distance between GNSS receiver and laser sensor. Despite the data cleaning, computational 

performance still had some limitations, so an individualization of the plots was done, as shown in 

Table 3. 
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Table 3 – Descriptive statistics of the data processed individually 

 Plants height (m)  

Plots Number of points Minimum Maximum Average 
Standard 

deviation (m) 
Coefficient of 
variation (%) 

02 1,941,625 0.14 2.96 1.93 0.58 30.05 
03 2,390,518 0.14 2.94 1.82 0.56 30.77 
06 2,175,248 0.14 3.00 1.99 0.57 28.64 
07 2,798,935 0.14 3.00 1.94 0.55 28.35 
10 1,921,656 0.14 2.96 1.96 0.55 28.06 
11 2,576,604 0.14 2.99 2.02 0.56 27.72 
14 1,734,159 0.14 3.08 2.00 0.56 28.00 
15 2,553,001 0.14 3.01 2.15 0.57 26.51 

The number of points processed individually is significantly lower when compared to the total 

processing experimental area, resulting in a feasible processing time. The result shows a variation of 

up to 30.77% in plants height, so there was no statistically significant difference in relation to average 

height of sugarcane plants between plots considered in this study. Table 4 presents manual 

measurements in the experimental area, such as the height of sugarcane plants and the estimated 

yield of each plot. 

Table 4 – Height and estimated yield of sugarcane measured manually for each plot 

Plots Plants height (m) Yield (t ha-1) 

02 3.63 102.30 
03 3.49 107.80 
06 3.59 111.20 
07 3.64 110.10 
10 3.74 112.00 
11 3.75 111.90 
14 3.67 113.00 
15 3.69 89.60 

Variation of the yield and plants height parameters measured manually were, respectively, 7.0% and 

2.0% indicating that no significant variability was verified among evaluated plots. Figure 9 shows the 

average plants height obtained by processing of the laser sensor data versus that obtained manually 

referring to the eight assessed plots, in addition to the power trend line used in the regression. 
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Fig. 9 - Average plants height obtained by the laser sensor and obtained manually 

More points would be needed for comparative purposes and validation of the method. A moderate 

correlation (r = 0.65) between the height indicated by the laser sensor and that manually measured is 

because of the presence of leaves that are detected as an obstacle by the sensor, unlike what 

happens in the biometry by hand. 

There is no correlation between the height data from the sensor and yield (r = -0.52), as well, no 

variability using these parameters was verified. The correlation between the height measured 

manually and yield is 0.01. 

The low level of correlation among the evaluated parameters can be explained by the few points of 

manuals measurements and plots assessed, which has small ranges of variation to be compared 

with the data from the laser sensor. Certainly, the ideal condition would be to compare these data 

with yield measured in the field by a yield monitor. 

An alternative to manual measurements and almost uniform plots would be the use of yield monitor 

data in broader yield variability, under field conditions, to better explore the relationship with the crop 

height measured by the laser sensor. 

  



Proceedings of the 13th International Conference on Precision Agriculture 
July 31 – August 3, 2016, St. Louis, Missouri, USA Page 11 

FINAL CONSIDERATIONS 

The measurement system should be improved to the conditions of commercial areas of sugarcane, 

where there is no possibility of entering with an agricultural vehicle. Furthermore, the presence of leaf 

"lying ground" in the pre-harvest period is a challenge that has to be faced as it represents a noise to 

the laser sensor measurements. Regarding the quality of the laser sensor measurements in the field 

it was found that terrain inclination and the incident light in the equipment affects its data acquisition. 

Therefore, such conditions should be considered on the next steps of investigation and field uses. 

The perspective is that LiDAR technology will be available in agriculture as a form of real-time 

monitoring of the crop, probably by aircraft. The information about production parameters, such as 

sugarcane biomass estimation may be an important input for logistics planning in the pre-harvest 

period. 
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