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Introduction
The detection of crop spatial variability in Precision Agriculture (PA) is achieved by integrating data
layers. The use of machine learning (ML) algorithms enables more accurate predictions. Remote
sensing (RS) tools at the orbital level are widely used to detect crop variability. RS has been a key
focus in agricultural monitoring and is considered a promising resource for decision-making in farm
management (Song et al., 2009). Based on spectral data from plants—particularly visible bands of
the electromagnetic spectrum, RGB, and near-infrared (NIR) bands—it is possible to monitor crop
growth cycles, vegetation cover, soil moisture, nitrogen stress, and overall crop health and yield (Cao
et al., 2020; Cicore et al., 2016). Despite its economic importance, sorghum has been the subject of
limited studies involving data integration. Therefore, it is timely to investigate the potential of yield
prediction in sorghum using data fusion approaches. A key hypothesis of this work is that the
inclusion of seeding as-applied data—often overlooked—along with other layers, leads to more
precise yield prediction. Unlike traditional approaches that assume homogeneous seed distribution,
this study emphasizes that even in the absence of intentional variable rate seeding, significant
variation in plant density can occur, affecting yield outcomes. The objective of this study is to evaluate
the impact of sorghum seeding data and its interaction with other data layers in predicting sorghum
yield using machine learning algorithms.

Material and Methods
The sorghum data were collected from a commercial field in Itaí, São Paulo state, Brazil, over a pivot-
irrigated area (54.6 ha) during the 2024 growing season. Yield data were collected from harvesters
equipped with yield monitors, and seeding data were collected from an instrumented seeder
measuring the seed rate applied to each row. Additionally, remote sensing data were obtained from
the Sentinel-2A satellite at five different stages using the normalized difference vegetation index
(NDVI) on the following dates: February 3, 2024 (1_NDVI = Tillering), February 23, 2024 (2_NDVI =
Stem elongation), March 4, 2024 (3_NDVI = Flowering), March 14, 2024 (4_NDVI = Grain filling), and
April 3, 2024 (5_NDVI = Physiological maturity), during the crop cycle. Soil chemical attributes (0–
0.2 m depth) were sampled in a 3 ha grid before seeding. The following attributes were analyzed: B,
Ca, CEC (cation exchange capacity), Cu, K, Mg, Mn, OM (organic matter), P, pH, S, V (base saturation),
and Zn. Elevation data were obtained from the GNSS receiver on the harvester, and the apparent soil
electrical conductivity (ECa) map was generated at two depths: 0–0.75 m and 0–1.50 m. The data
were interpolated using IDW at a 10-meter pixel resolution, followed by exploratory data analysis
and Spearman correlation between the layers. The correlation was classified according to Rumsey
(2023). Machine learning models were used to predict yield based on the selected data layers. The
models were compared with and without the seeding layer, and the predicted data were compared
to the harvester yield map. In this study, we compared random forest (RF), gradient boosting (GB),
and support vector machine (SVM). The models were tuned based on the following metrics: MAE
(Mean Absolute Error), RMSE (Root Mean Square Error), R² (Coefficient of Determination), and Lin’s
CCC (Lin’s Concordance Correlation Coefficient). Finally, cross-validation plots were generated for
each model, as well as variable importance charts.

Results and Discussion
The following correlations were found: seeding rate vs. yield showed amoderate negative correlation
of -0.56, with statistical significance (p < 0.00001). This inverse relationship suggests that an increase
in seeding density may be associated with a reduction in crop yield. Elevation vs. yield presented a
moderate positive correlation of 0.58. The correlation between yield and NDVI at stages 3 and 4
(3_NDVI and 4_NDVI) were -0.42 and -0.40, respectively (moderate and negative). Additionally, yield
vs. B showed a moderate negative correlation of -0.47, while yield vs. K showed a moderate positive
correlation of 0.46.
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Figure 01. Spearman correlation and performance comparison of machine learning models
a = spearman matrix correlation; b = RF model performance; c = GB model performance; d = SVM model
performance.
The results showed that the RFmodel was the most accurate, with the lowest error (MAE of 0.18 and
RMSE of 0.30) and high concordance (Lin's CCC of 0.96), regardless of the seeding map layer. The GB
model also performed well, with a MAE of 0.25 and Lin's CCC of 0.94, but was inferior to RF. The SVR
showed the worst performance, with a MAE of 0.83 and Lin's CCC of 0.32, indicating low predictive
power.

Conclusion
In this study, we found a moderate negative correlation (-0.56) between seeding rate and yield,
suggesting that adjusting planting density can influence yield. However, incorporating the seeding
map layer did not substantially improve model performance to predict sorghum yield. Among the
tested approaches, RF was the most effective model for yield prediction.
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